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Based on principles of geometric optimal control theory, coher-
ence transfer building blocks can be derived which achieve optimal
sensitivity. Here, experimental pulse sequences are presented that
achieve the best possible coherence-order-selective in-phase transfer
(S− → I−) for a heteronuclear 2-spin system for any given mixing
time in the absence of relaxation. For short mixing times, the opti-
mal experiment improves the sensitivity of isotropic mixing by up
to 12.5%. C© 2002 Elsevier Science (USA)
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1. INTRODUCTION

In order to maximize the sensitivity of NMR experiments,
optimal pulse sequence elements are desirable for each individ-
ual coherence transfer step (1). If relaxation can be neglected,
theoretical upper bounds can be derived for the transfer between
arbitrary initial and final terms of the density operator (2–4). In
practice, it is desirable to reach these bounds as fast as possible
in order to reduce relaxation losses during the transfer period
(5). For applications to biomolecules, relaxation rates are often
comparable or even larger than typical coupling constants. A
commonly used approach to take relaxation losses into account
is to reduce the mixing time τmix of experimental building blocks
that reach the unitary bound in the absence of relaxation, in order
to find a compromise between coherence transfer and relaxation
losses. However, as discussed below, this approach leads in gen-
eral to suboptimal solutions. Theoretical and practical issues
related to this problem are:

1. What is the shortest mixing time τ ∗
mix for which the unitary

bound (3, 4) of a desired transfer can be reached in a given spin
system?

2. What is the maximum transfer amplitude (in the absence
of relaxation) for mixing times τmix < τ ∗

mix and what are the cor-
responding unitary transformations?
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3. Which experimental building blocks implement the opti-
mal unitary transformations for τmix < τ ∗

mix?

In a recent theoretical paper (6), the first and second issues
were solved analytically for coherence-order-selective coher-
ence transfer (4) in heteronuclear I S spin systems. In this pa-
per, these theoretical results are translated into practical pulse
sequences and the theoretical predictions are tested experimen-
tally. This demonstrates that the commonly used strategy for
the adjustment of pulse sequence elements in the presence of
relaxation can give suboptimal results: In general, it is not suf-
ficient to simply reduce the mixing period of a given transfer
step in order to find a compromise between coherence transfer
and relaxation losses. In addition, it can be necessary to mod-
ify the pulse sequence in order to achieve maximum transfer
efficiency.

2. THEORY

We consider a heteronuclear I S spin system with offsets νI

and νS and a scalar coupling constant J . The corresponding
Hamiltonian H has the form

H0 = 2πνI Iz + 2πνS Sz + 2π J Iz Sz . [1]

For coherence-order-selective transfer of in-phase coherence
from spin S to spin I , the initial density operator is ρ(0) =
S− = Sx − iSy and the target operator is I − = Ix − iIy . The
normalized absolute value of the transfer amplitude for a given
mixing period τmix is given by (4)

η(τmix) = |〈I −|ρ(τmix)〉|
‖S−‖‖I −‖ = 1

2
Tr{I +ρ(τmix)}. [2]

Our goal is to find optimal pulse sequences that maximize the
transfer amplitude η(τ ) for any given mixing period τ . Based on
principles of geometric optimal control theory (7), it has been
shown recently (6) that the optimal mixing Hamiltonian Hmix
2
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FIG. 1. Graphical representation of the optimal mixing times τz (solid line)
and τ⊥ = τx = τy (dashed line) as a function of the overall mixing time τmix.

depends on the duration τ of the mixing period and has the
general form

Hopt = 2π J

τmix
(τx Ix Sx + τy Iy Sy + τz Iz Sz) [3]

with

τmix = τx + τy + τz [4]

and

τx = τy = τ⊥ = 1

Jπ
arctan

(
1

2
tan(Jπτz)

)
[5]

(see Fig. 1). For any given mixing time τmix < 1.5J−1, the
corresponding optimum transfer efficiency ηopt(τmix) is given
by

ηopt(τmix) = sin(Jπτz) sin(Jπτ⊥) [6]

(see solid line in Fig. 2). For τmix ≥ 1.5J−1 the transfer efficiency
ηopt(τmix) is 1, which corresponds to the unitary bound for this
transfer (4). Hence, the minimum time that is required to reach
the unitary bound is given by

τ ∗
mix = 1.5J−1. [7]

According to Eqs. [3]–[5] and Fig. 1, Hopt approaches the
isotropic mixing Hamiltonian (8–10) with τx = τy = τz = τmix/3
for the mixing time τmix = τ ∗

mix. This corresponds to the well-
known fact that isotropic mixing reaches the unitary bound at
τmix = 1.5J−1 (10) and makes it interesting to compare the op-
timal transfer efficiency ηopt(τmix) (Eq. [6]) with the transfer
efficiency
ηiso(τmix) = sin2(π Jτmix/3) [8]
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FIG. 2. Transfer amplitude of the optimal transfer ηopt (theoretical curve,
see Eq. [6], solid line; experimental data; filled circles) as a function of the
mixing time τmix for a coupling constant of 213 Hz. In addition, the transfer
amplitude of isotropic mixing ηiso (theoretical curve, see Eq. [8], dashed line;
experimental data; open circles) is also shown.

of heteronuclear isotropic mixing experiments (10) (see dashed
line in Fig. 2).

In Fig. 2, the curves ηopt(τmix) and ηiso(τmix) are plotted and
the ratio of these two curves is shown in Fig. 3. In the limit
of short mixing times τmix � τ ∗

mix, the transfer amplitude of the
optimal mixing Hamiltonian is up to 12.5% larger compared to
conventional isotropic mixing (cf. Fig. 3).

Assuming for simplicity that relaxation results in a simple
exponential decay of coherences with an overall relaxation rate
�, the maxima of the damped functions ηopt(τmix)×exp{−�τmix}
and ηiso(τmix) × exp{−�τmix} can be determined. The ratio of
these maxima is plotted in Fig. 4 as a function of the relaxation
rate � for 0 ≤ � ≤ 7J . For relaxation rates that are on the order
of 2J , the maximum transfer amplitude of the optimal mixing
Hamiltonian is about 6% larger than that for isotropic mixing
and for � > 5J the gain exceeds 10%.
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FIG. 3. Theoretical (dashed curve) and experimental ratio ηopt/ηiso of the

transfer amplitudes of optimal and isotropic mixing experiments for coherence-
order-selective in-phase transfer as a function of the mixing period τmix.
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FIG. 4. Gain of the optimal mixing Hamiltonian compared to isotropic
mixing as a function of the relaxation rate � (in units of the scalar coupling
constant J ).

3. EXPERIMENTS

In order to test the theoretical predictions, the optimal
mixing Hamiltonian Hopt and the isotropic mixing Hamiltonian
Hiso were implemented using the 13CH moiety of chloroform
(70% CHCl3 dissolved in acteone-d6, T = 25◦C) as a model
I S spin system with a coupling constant J = 213 Hz. Figure 5
shows the pulse sequence used to acquire experimental transfer
functions. In-phase S spin (13C) coherence (Sx ) was prepared
using heteronuclear NOE followed by a 90◦

y(S) pulse. Spoil
gradients were applied prior to the initial 90◦

y(S) pulse and
heteronuclear coherence transfer echoes (11, 12) were created
by gradients in order to select coherence-order-selective in-
phase transfer (5) and to suppress the 12CHCl3 signal. Dur-
ing detection of the spin I signal, spin S was decoupled. In
the transfer block (gray box in Fig. 5), various pulse sequ-
ence elements can be inserted in order to test their transfer
efficiency.

Experimental building blocks to implement the optimal mix-
ing Hamiltonian Hopt can be derived from well-known pulse
sequence elements (13) by simply adjusting the delays τx , τy ,
and τz according to Eq. [5]. We used the zyx-ICOS-CT sequence
(cf. Fig. 5a) (13) as a basis for the optimal and isotropic mix-
ing experiments. Note that even for τx = τy = τz , this sequence
would only represent a true isotropic mixing Hamiltonian if at
the end an additional 90◦

x (S) pulse would be applied, followed
by a 90◦

−z(I, S) rotation. However, for the transfer of S− (or S+)
to I −, the additional pulses and rotations have no effect on the
transfer efficiency and can be omitted. In order to reduce the
effects of experimental imperfections such as rf inhomogeneity,
we further minimized the number of pulses for our experimental
test: In the I S model system, the offsets of both spins can be
set to zero (i.e., νI = νS = 0 Hz) which eliminates the need for
the six 180◦ pulses which only serve to refocus the effect of the
offset terms in H0. However, as an odd number of 180◦ pulses is

removed for each spin I and S, the coherence order of the trans-
fer is reversed; i.e., the modified sequence in Fig. 5b effects the
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FIG. 5. Optimal pulse sequence elements for coherence-order-selective in-
phase transfer: (a) zyx-ICOS-CT sequence (13) and (b) simplified sequence
for offsets νI = νS = 0 Hz. The delays τx , τy , and τz for the optimal trans-
fer are given in Eq. [5]. An isotropic effective mixing Hamiltonian results for
τx = τy = τz = τmix/3.

transfer S± to I ∓ rather than S± to I ±. In our experiments, this
was taken into account by inverting the sign of the refocusing
gradient prior to detection. Alternatively, the phase of the last
90◦(I ) pulse could be inverted, in order to effect a transfer from
S± to I ±.

(a) (b) (c) (d)

FIG. 6. 1H spectra of 13CHCl3 after optimal (left signal in each set) and
isotropic (right signal in each set) coherence-order-selective coherence transfer

from 13C with mixing times τmix of (a) 1.76 ms = 0.267τ ∗

mix, (b) 3.52 ms =
0.515τ ∗

mix, (c) 5.28 ms = 0.788τ ∗
mix, and (d) 7.04 ms = τ ∗

mix.
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For the optimal and the isotropic transfers, experimental
spectra were recorded for 47 different mixing times τmix ≤ τ ∗

mix
with 42 scans each and a relaxation delay of 30 s. For mix-
ing times τmix ≈ (1/4)τ ∗

mix, τmix ≈ (1/2)τ ∗
mix, τmix ≈ (3/4)τ ∗

mix, and
τmix = τ ∗

mix, sample spectra are shown in Fig. 6. In Fig. 2, inte-
grated experimental signal amplitudes are shown (circles) and a
good match between experimental and theoretical data is found.
For a better comparison of the relative transfer amplitudes of
optimal and isotropic transfer experiments, the ratio of the ex-
perimental transfer amplitudes is also plotted in Fig. 3. Again,
a reasonably good match is found between theory and experi-
ment. The small systematic deviation for short mixing times can
attributed to the incomplete suppression of the 12CHCl3 signal;
no attempt was made to correct for this residual artifact.

4. CONCLUSION

Based on the principles of geometric optimal control theory,
the best possible coherence transfer amplitude can be derived
for coherence transfer in spin systems consisting of two cou-
pled spins (6). Compared to conventionally used experiments
(isotropic mixing), gains of up to 12.5% were theoretically pre-
dicted for the transfer of S− to I − in an I S spin system. We have
demonstrated that optimal transfer amplitudes can be realized
experimentally by simply adjusting the parameters of existing
pulse sequence elements. Even moderate gains in transfer effi-
ciency can be significant in practical application, in particular
if several such transfer steps are used in a given experiment.
For example, the duration of an experiment with three consec-
utive coherence-order-selective in-phase transfer steps could be
reduced by more than 25% (50%) without reducing the overall
sensitivity, if the transfer amplitude of each transfer step could
be improved by 5% (12.5%). The sequences presented were an-
alyzed assuming that relaxation simply leads to an exponential
overall damping function with a given relaxation rate �. How-
ever, this simplified view does not take into account the fact
that for a given spin system some terms of the density operator
relax more slowly than others and further sensitivity gains are

expected by including concrete relaxation mechanisms in the
optimization procedure.
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5. T. Untidt, T. Schulte-Herbrüggen, B. Luy, S. J. Glaser, C. Griesinger,
O. W. Sørensen, and N. C. Nielsen, Design of NMR pulse experiments
with optimum sensitivity: Coherence-order-selective transfer in I2S and I3S
spin systems, Mol. Phys. 95, 787–796 (1998).

6. N. Khaneja, R. W. Brockett, and S. J. Glaser, Time optimal control in spin
systems, Phys. Rev. A 63, 032308 (2001).

7. R. W. Brockett, System theory on group manifolds and coset spaces, SIAM
J. Control 10, 2 (1972).

8. D. P. Weitekamp, J. R. Garbow, and A. Pines, Determination of dipole
coupling constants using heteronuclear multiple quantum NMR, J. Chem.
Phys. 77, 2870–2883 (1982); Erratum, J. Chem. Phys. 80, 1372 (1984).

9. P. Caravatti, L. Braunschweiler, and R. R. Ernst, Heteronuclear correlation
spectroscopy in rotating solids, Chem. Phys. Lett. 100, 305–310 (1983).

10. S. J. Glaser and J. J. Quant, Homonuclear and heteronuclear Hartmann–
Hahn transfer in isotropic liquids, in “Advances in Magnetic and Optical
Resonance” (W. S. Warren, Ed.), Vol. 19, pp. 59–252, Academic Press,
San Diego (1996).

11. A. A. Maudsley, A. Wokaun, and R. R. Ernst, Coherence transfer echoes,
Chem. Phys. Lett. 55, 9–14 (1978).

12. R. E. Hurd and B. K. John, Gradient-enhanced proton-detected heteronu-
clear multiple-quantum coherence spectroscopy, J. Magn. Reson. 91, 648–
653 (1991).

13. M. Sattler, P. Schmidt, J. Schleucher, O. Schedletzky, S. J. Glaser, and
C. Griesinger, Novel pulse sequences with sensitivity enhancement for in-

phase coherence transfer employing pulsed field gradients, J. Magn. Reson.
B 108, 235–242 (1995).


	1. INTRODUCTION
	2. THEORY
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.

	3. EXPERIMENTS
	FIG. 5.
	FIG. 6.

	4. CONCLUSION
	ACKNOWLEDGMENTS
	REFERENCES

